Strong interaction continues to pose fundamental challenges in the domain of particle physics. Recent developments in hadron spectroscopy have uncovered an array of exotic hadrons, including pentaquarks, tetraquarks, as well as candidates for hybrid states and glueballs, all of which demand meticulous classification and understanding. To make progress in comprehending the inner workings of these hadronic objects, it is crucial to refine methods used in correlating observable phenomena with the intrinsic properties of particle interactions. This seminar aims to provide an update on the latest works within the world of exotic hadrons, placing a particular emphasis on the implementation of model-independent techniques rooted in scattering theory for data analysis purposes. I will highlight a fascinating connection between the analysis of the dynamics of the first doubly charm tetraquark and the classical three-body problem, a topic that continues to captivate and inspire investigation to this day.